

Workshop on Atmospheric Science and Connection with Related Science – ROME, CNR, 26-27 April 2006

Routine Meteorological Observation @ Station Concordia

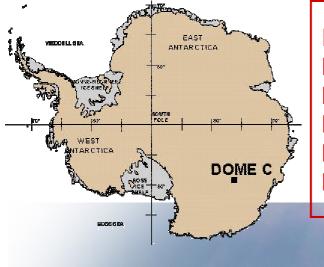
- L. Agnoletto¹, L. De Silvestri², S. Dolci¹, U. Gentili², P. Grigioni², A. Iaccarino², A. Pellegrini¹, M. Proposito²
- 1 PNRA SCrl
- 2 ENEA CLIM

Homework:

- Which atmospheric measurements have you done up to now?
- 2. Which atmospheric measurements are needed in your field?
- 3. Will it be possible to create a data base including the past measurements?
- 4. Is it possible to realize an atmospheric observatory for these measurements?
- 5. Who should be in charge for these measurements?
- 6. Who should be in charge of creating a rational database?
- 7. Which should be is the dissemination strategy?

Weather Station

Radiosounding



Installation date:

Position:

Model:

Power:

Mast height:

Local data storage:

2005, January 30 (XX Exp.)

75° 06' S - 123° 18' E

Vaisala Milos 520

220 V

3 meters

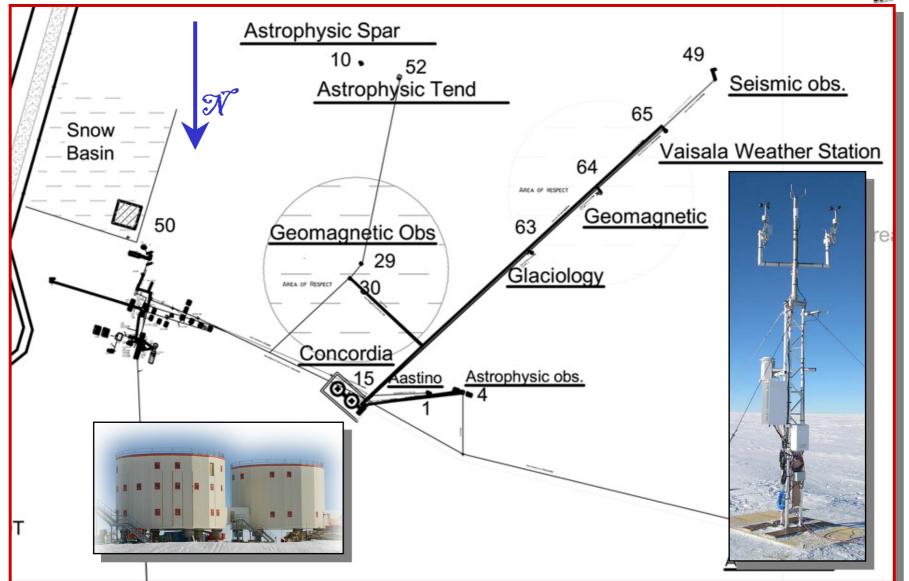
4 MB flash memory

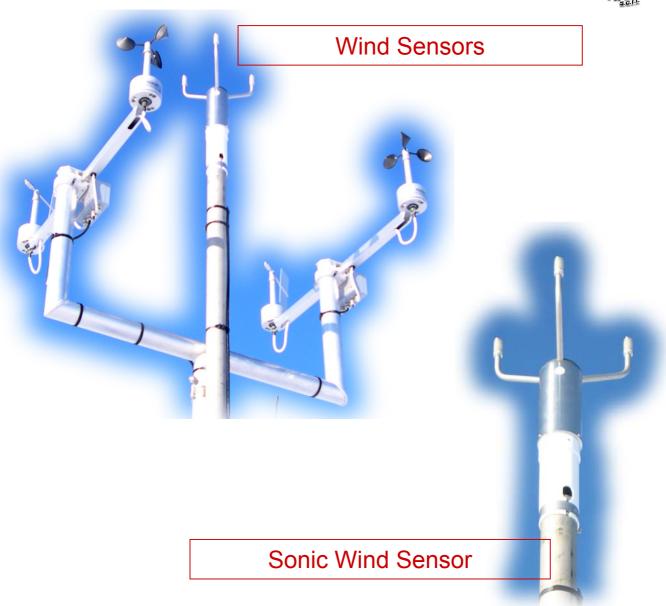
- 2 optoelettronic not heated sensors
- 2 optoelettronic heated sensors
- 1 sonic heated sensor

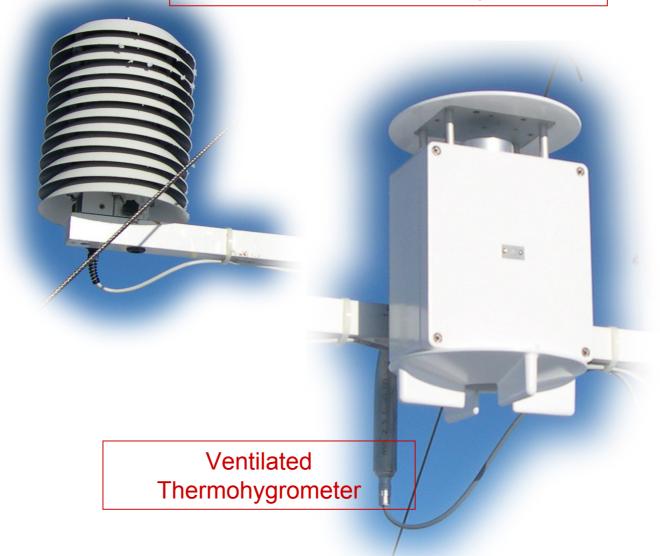
Temperature and Humidity

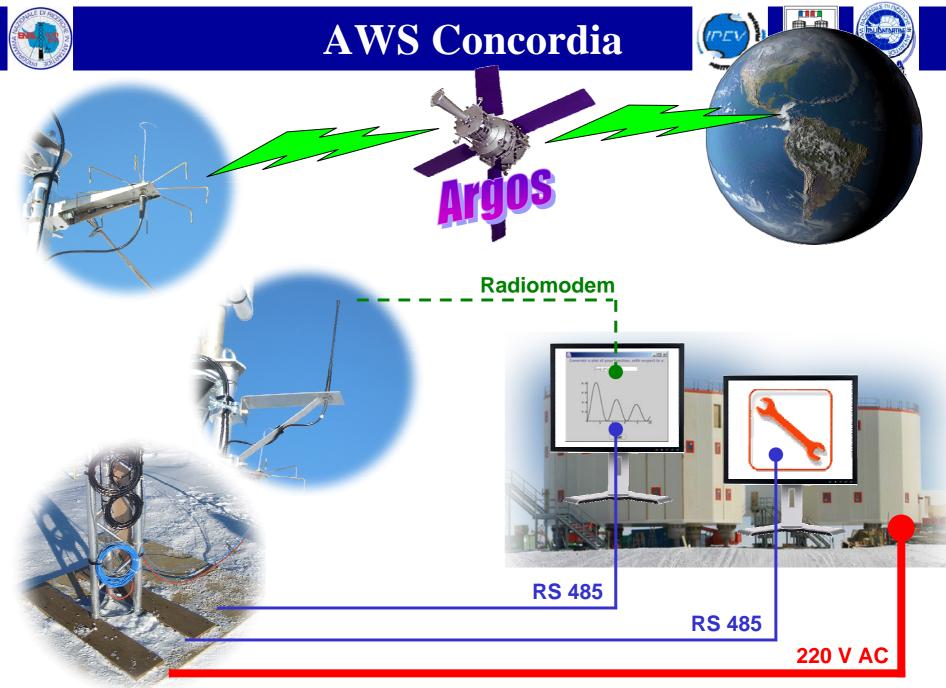
- traditional sensors
- Ventilated Thermohygrometer

Atmospheric Pressure

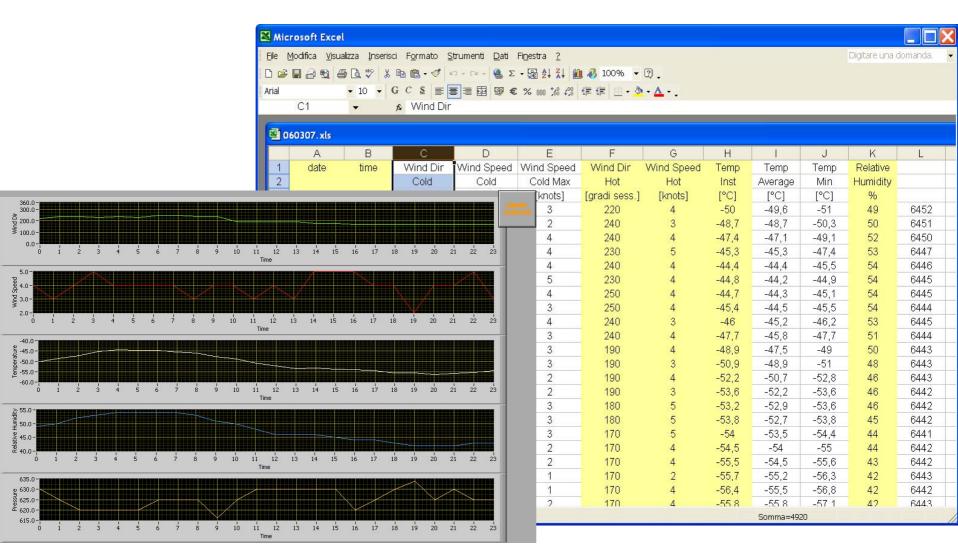

Workshop on Atmospheric Science and Connection – Rome, April 26-27 2006







Temperature and Humidity Sensor



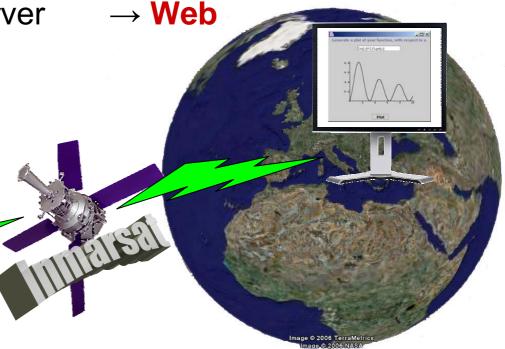
Local Data Dissemination

Radiosounding

One radiosounding/day at 12:00 UTC

2005 (since 23/03): 194 launches

2006 (updated to 24/03): 110 launches

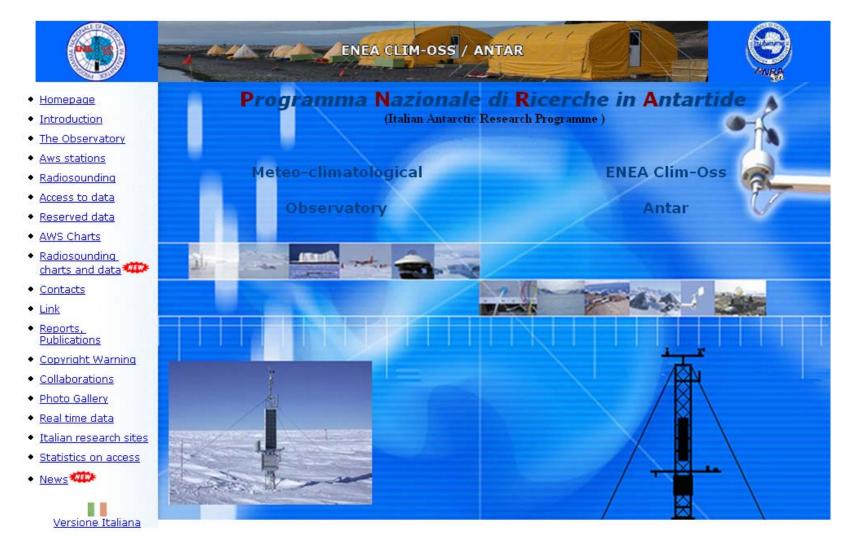


Data transmission to Europe:

→ GTS

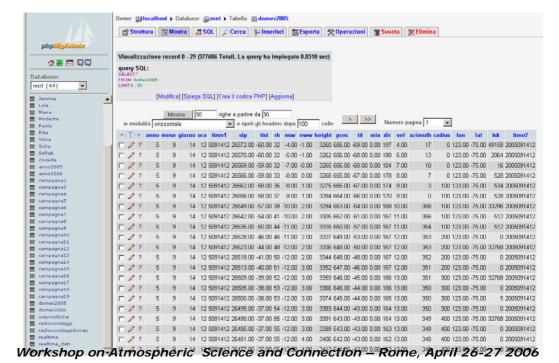
to Climantartide.it FTP server

2. Which atmospheric measurements are needed in your field?



www.climantartide.it

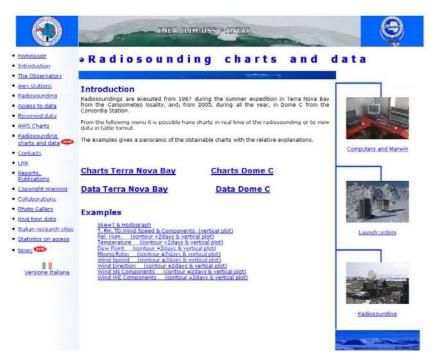
Database and Archive



₩ -	4·□ ● 6 ♥ × B B ♥ ♡ ® 外科 ▼ B ▽ M ト W D a · D .									_ B ×	
T	anno	mese	giorno	ora	time1	slp	tist	rh	nsw	eww	he
	5	1	1	12	6010112	26525	-21	56	1,2	-3,9	
	6	1	1	12	6010112	26522	-21,3	61	0,9	-3,4	
	6	1	1	12	6010112	26518	-21,4	64	1	-3,7	
	6	1	1	12	6010112	26512	-21,5	67	1,1	-4,1	
	6	1	1	12	6010112	26506	-21,6	70	1,2	-4,5	
	6	1	1	12	6010112	26500	-21,7	72	1,3	-4,9	
	6	1	1	12	6010112	26494	-21,8	73	1,5	-5,2	
	6	1	1	12	6010112	26488	-21,9	74	1,6	-5,6	
	6	1	1	12	6010112	26481	-22	75	1,8	-5,9	
	6	1	1	12	6010112	26474	-22,1	76	2	-6,1	
	6	1	1	12	6010112	26467	-22,2	77	2,2	-6,4	
	6	1	1	12	6010112	26461	-22,3	78	2,3	-6,6	
	6	1	1	12	6010112	26455	-22,4	78	2,5	-6,7	
	6	1	1	12	6010112	26448	-22,5	79	2,7	-6,8	
	6	1	1	12	6010112	26443	-22,5	80	2,9	-6,9	
	6	1	1	12	6010112	26439	-22,6	80	3	-7	
	6	1	1	12	6010112	26435	-22,6	79	3,1	-7	
	6	1	1	12	6010112	26429	-22,6	79	3,2	-7,1	
	6	1	1	12	6010112	26423	-22,7	79	3,3	-7,1	
	6	1	1	12	6010112	26416	-22.7	80	3.3	-7 1	

Storing Data

- Access database
- Mysql database
- Zip archive

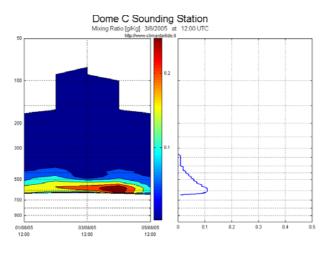


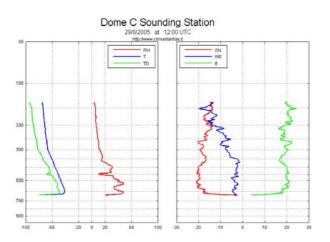
Real-time Radiosounding Charts

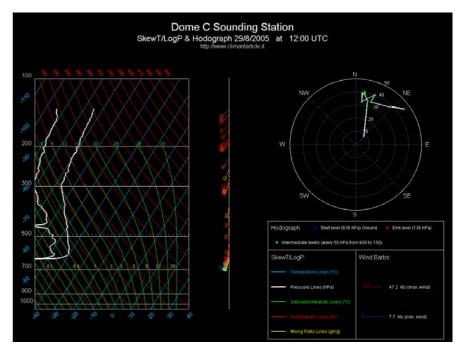
Charts available in real time (10 to 30 seconds)

- SkewT & Hodograph
- T,RH,Wind (vertical plot)
- Contour ± 2 days & vertical plot of:

RH, T, Dew Point, Mixing Ratio, W. Speed, W. Direction; Wind Components.


Charts examples





Mixing Ratio

SkewT and Hodograph

T, RH, TD, Wind speed and Components

The Observator

Aws stations

Radiosounding

· Access to data

· Reserved data

View and Dowloand Data (**)

• Radiosounding standard data Dome C • Introduction

Introduction

· AWS Charts Radiosoundin

charts and data

12:00

29 30 31

17

22 23 24 25 26 27

Contacts · Link

Reports...
 Publications

Copyright Warning Collaborations

· Photo Gallery · Real time data

 Italian research sites · Statistics on access

· News

Data collected by radiosounding are presented for standard levels in table format. (RPa "ground pressure": 925, 850, 700, 500, 400, 300, 250, 200, 150, 100, 70, 50, 30, 20, 10). Choose the radiosounding disking on the rectangle with the hour of launch.

The table show the fields: Atmospheric pressure at standard levels (hPa) ASL height (m) Wind direction (degree)

View daily data

View Data

Radiosounding of 2006-01-30 at 12 Atmospheric ASL Relative Wind Wind pressure at Temperature height direction humidity speed standard levels (°C) (%) (degree) (m/s) (m) (hPa) 5058 500.0 190 3.00 -35.0030 6573 57 400.0 187 6.00 -44.0049 300.0 8458 180 13.00 -55.00 3 250.0 9621 194 4.00 -50.00 200.0 11100 203 4.00 -46.001 150.0 13001 -42.00288 1.00 1 100.0 15727 275 2.00 -42.001 70.0 18117 -39.00 199 3.00 1 50.0 20472 318 1.00 -39.00 1 23798 30.0 111 3.00 -38.00 1 20.0 -999 -999 -999 -999 -999 10.0 -999 -999 -999 -999 -999

- Introduction
- · Aws stations
- Radiosounding
- · Access to data Reserved data
- AWS Charts
- Radiosounding
- charts and data Contacts
- · Link

- Copyright Warning
- Collaborations
- Photo Gallery
- · Real time data
- Italian research sites Stabstics on access
- News

Radiosounding Dome C

18 19 20

Introduction

Radiosoundings done in Dome C are daily downloadable for the current month, and monthly for the other months, and are in zip

Data

01 April 2006 ▼ Daily data

March 2005 • Monthly data

2005 Vearly data

Note: dimension of yearly data file is 29 Mb

Download Data

Aws data

 The Observatory Aws stations Radiosounding

· Access to data

· Reserved data

 AWS Charts Radiosounding charts and data

 Contacts Link Reports, <u>Publications</u> Copyright Warning

 Collaborations Photo Gallery

· Real time data Italian research sites

Homepage data Introduction · AWS

Introduction

Automatic weather station data can be view by year. Choose "Automatic Weather Stanions" and "Year" and click on the interesting variables. Then click on "View data" and obtain a data table that can be saved in .zip format. Data are three-hourly till 1991, and hourly from 1992. Next table presents file's format, and, for each misured variable, unit and the value indicating

Variables	Units	Value for missing datum		
Wind direction	degree	-10		
Wind speed	kts	-10		
Temperature	°C	99.9		
Relative humidity	%	-10		
Atmospheric pressure	hPa	-10		

Data

Download

Automatic Weather Stations	Year Start	Year End
Concordia (////) Dome C	2005 💌	2005 🕶
dir : Wind direction		
uel : Wind speed		
tist : Temperature		
rh : Relative humidity		
pres : Atmosferic pressure		
rmed : Solar radiation		·

 Statistics on access • News

	100 H	
	- 10	
	100	100
Ver	sione It	aliana

View Data

- Charts in real time
- View AWS data

AWS Concordia (////) Dome C Wind Rose From 27/01/2005 at 14:00 UTC to 17/12/2005 at 04:00 UTC 4.0% 1.4% 7.5% W WSW 3.6%

Storing Data

- Access database
- Mysql database

14 15 16		260	4	20 7		
17 18 19 20 12 34 56 78 910 11 11 11 11 11 11 11 11 11 11 11 11 1	66 22.88 22.99 22.00 22.22 22.33 2 2 2.34 4.5 22.24 22.34 4.5.5 22.66 22.7.7 22.88 22.99 22.11 22.23 22.34 22.35 2.35 2.35 2.35 2.35 2.35 2.35 2.3	2660 2500 2600 2600 2600 2600 2700 2600 2700 2600 -100 -100 -100 -100 -100 -100 2800 2900	4566654445-100-100-100-100-100-100-100-100-100-10	-39,7600434,95340434,95340434,95340434,95340434,95340434,9534043,9534043,999,999,999,999,999,999,999,999,999,9	17,0 17,0 16,0 16,0 16,0 16,0 16,0 11,0 10,0 11,0 11	648,3 648,2 648,0 648,0 648,2 648,2 648,2 648,4 648,6 -10,0 -10,0 -10,0 -10,0 -10,0 -10,0 650,8 651,0 651,2 651,2 651,2 651,2 651,2 -10,0 651,2 -10,0
18 19 221 22 30 12 34 45 66 78 99 101 112 113 114 115 116 117 118 119 22 12 23 01 12 12 12 12 13 14 15 16 17 17 18 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19	88 2 2 9 2 2 9 9 9 9 9 9 9 9 9 9 9 9 9 9	260 260 270 270 270 260 -10 -10 -10 -10 -10 -10 -10 -10 -10 270 280 270 250 260 250 250 250 250 270 -10 -10 -10 -10 -10 -10 -10 -10 -10 -1	5 4 4 4 5 5 4 4 5 -100 -100 -100 -100 -100 -100 -100 -1	-44,5 -44,5 -43,5 -39,1 99,9 99,9 99,9 99,9 99,9 99,9 99,9		16,0 16,0 16,0 16,0 17,0 -10,0 -10,0 -10,0 -10,0 -10,0 -10,0 -10,0 -10,0 24,0 223,0 17,0 17,0 16,0 16,0 16,0 16,0 16,0 16,0 17,0 17,0 17,0 17,0 17,0 17,0 17,0 17,0 17,0 17,0 17,0 17,0 17,0 17,0 17,0 17,0 17,0 17,0

- 4. Is it possible to realize an atmospheric observatory for these measurements?
- 5. Who should be in charge for these measurements?
- 6. Who should be in charge of creating a rational database?
- 7. Which should be is the dissemination strategy?

Thank you